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Abstract

The cross-coupling at an excited interface between, on the one hand, a lateral moment and an axial
translational velocity and, on the other, an axial force and a lateral rotational velocity is studied for an
arbitrarily deep beam. Complete descriptions are developed for the two associated point-cross mobility
elements. In addition, the point mobility is established relating to an axial force excitation at an edge of the
beam. From the theoretical results it can be concluded that reciprocity with respect to the point-cross
mobility elements is strictly, only valid in the hypothetical case of point excitation. The numerical results
demonstrate, however, that reciprocity can be invoked in an approximate sense also for realistic excitation
conditions. Moreover, it is shown that a reduction of an axial force excitation, remote from the neutral
layer, to a combined force and moment excitation at the neutral layer is not applicable except for very small
Helmholtz numbers. Finally, it can be concluded that the shear-tensional nearfield affects the point-cross
mobilities in the case of two-dimensional beam-like structures. A similar influence is established for the
axial point force mobility but an unambiguous description has not been found.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In many engineering applications involving vibrating machinery, deep beams are favoured
installation positions, the argument being that high support stiffness is realized. In a previous
study [1], three primary aspects of nearfield effects in such deep beams as well as thick plates were
treated. First, can a refined, approximate theory such as Mindlin [2] or Timoshenko [3] theory for
plate- and beam-like structures, respectively, approximately describe the shear-tensional nearfield
effects? Second, are the nearfield effects critically dependent on the actual excitation conditions
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such as the stress at the excitation area and third, can the local deformation be satisfactorily
approximated in closed form? With respect to the first aspect it was concluded that cross-
sectionally integrated theories are incapable of capturing the shear-tensional nearfield effects and
hence are inapplicable, whenever a contact area is comparable in dimensions to the depths or
thicknesses of involved structures. Regarding the second aspect, it was demonstrated that the local
deformation is only weakly dependent on the excitation conditions and primarily influenced by
the size of the contact area. Finally, it was possible to develop valid, closed-form approximations
for both force and moment excitation of plates whereas corresponding relations in the case of
deep beams are confined to moment excitation. Subsequently, the deep beam was further
examined [4] and closed-form approximations for the point force mobility were established.

Although deep beam and thick plates have received some attention, see e.g., Refs. [5–9], it is
almost exclusively the direct frequency response at the ‘point’ of excitation that has been
addressed. For source–receiver systems involving multiple components of excitation; however, the
transmission of vibrational power also depends on the amount of cross-coupling. Herein, the
structure-borne sound transmission to beam-like supports is revisited. Partly prompted by
preliminary results indicating non-reciprocal point-cross mobilities for, on the one hand, axial
force to rotational velocity and lateral moment to axial velocity on the other, these elements are
addressed. Moreover, the axial point force mobility is also included. In this context also, three
questions are posed. Can reciprocity be demonstrated for the point-cross mobilities, can cross-
sectionally integrated beam theories be employed in predictions and what is the influence of shear-
tensional nearfields?

2. Theoretical analysis

2.1. Lateral moment excitation to translational and lateral, rotational responses

Consider the beam of rectangular cross-section and total depth H; depicted in Fig. 1, subject to
a moment excitation via a soft or rigid indenter at the upper edge such that the stress is uniform
across the beam width.

For this case the translatory velocities, at the excited edge, y ¼ h ¼ H=2; are given by [1,5]

vx ¼ �
o

4pG

Z
N

�N

k #sðkÞ
ð2k2 � k2

T Þtan ðqLhÞ þ 2qLqT tan ðqT hÞ
N1

�

þ
ð2k2 � k2

T Þcot ðqLhÞ þ 2qLqT cot ðqT hÞ
N2

�
eikx dk ð1Þ

and

vy ¼ �
io

4pG
k2

T

Z
N

�N

qL #sðkÞ
1

N1
�

1

N2

� �
eikx dk; ð2Þ

where

N1 ¼ ð2k2 � k2
T Þtan ðqLhÞ þ 4k2qLqT tan ðqT hÞ; ð3aÞ

N2 ¼ ð2k2 � k2
T ÞcotðqLhÞ þ 4k2qLqT cotðqT hÞ ð3bÞ
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with
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�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; k2pk2
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i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
; k2

L;Tok2:

8><
>: ð4Þ

All symbols are defined in Appendix B.
The excitation wavenumber spectra for soft and rigid indenters, derived in Ref. [1], are given by

#ssðkÞ ¼ �
3iMz

tl

1

kl

sin kl

kl
� cos kl


 �
ð5aÞ

and

#srðkÞ ¼ �
2iMz

tl
J1ðklÞ: ð5bÞ

For the point mobility, the extension to a contact area that is large in comparison with the
governing wavelength is defined on a complex power basis [10], i.e.,

YN

wM ¼
Z

S

ns� dS=

Z
S

sx dS

����
����
2

:

With this definition, the point mobility from a lateral moment Mz to a lateral rotational velocity
wz was derived as [1]
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2pGtl2
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with the excitation wavenumber spectra

EðkÞ ¼
3

kl

� �2
sin kl

kl
� coskl

� �2

; soft indenter;

ð2J1ðklÞÞ2; rigid indenter:

8><
>:

Fig. 1. Moment excited deep beam.
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Regarding the cross mobilities, a power-based averaging is not appropriate since the excitation
and response components are orthogonal. Instead, a spatial average is introduced so that

YN

vM ¼
1

2l

Z
2l

vðxÞ dx=

Z
2l

stx dx

����
����: ð7Þ

The cross mobility from moment excitation to longitudinal response is thence derived to be

YN

vxMz
¼

io
4pGtl
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N
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k %EðkÞ
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�
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Analogously, the cross mobility from moment excitation to transverse response can be derived
and is given by
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¼ �

iok2
T

4pGtl

Z
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þ

1
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� �
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In Eqs. (8) and (9),

%EðkÞ ¼

3

kl

sin kl

kl
� cos kl


 �
sin kl

kl
; soft indenter;

2J1ðklÞ
sin kl

kl
; rigid indenter:

8>><
>>:

Since the integrand in Eq. (9) is an odd function then, irrespective of type of indenter, this point-
cross mobility vanishes identically.

In the case that the beam is very deep, the tangents and cotangents of the denominators N1 and
N2 tend to i and �i; respectively which means that

YN

vxMz
-�

io
4pGtl

Z
N

�N

k %EðkÞ
1

N

� �
½2ð2k2 � k2

T Þ þ 4qLqT � dk ð8aÞ

with

N ¼ ð2k2 � k2
T Þ þ 4qLqT : ð3cÞ

Due to the behaviour of the integrand for both kinds of indenters, however, a limiting value
process for low frequencies, similar to that employed in Ref. [1] for the moment mobility, is not
applicable. One can thus expect a qualitatively complicated dependence of the local deformation
on the beam height as well as length of the indenter, resembling that found for the transverse point
force mobility.

2.2. Axial force excitation to translational and lateral, rotational responses

In this case, the beam is subject to a force excitation in the axial direction via the soft or rigid
indenter at the upper edge as depicted in Fig. 2. It is assumed that the force is uniformly
distributed across the width of the beam.
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From the equation of motion and the constitutive equations, with the changes of the boundary
conditions for the present case observed,

tyxðx; hÞ ¼
Fx

2lt
; tyxðx;�hÞ ¼ syðx; hÞ ¼ syðx;�hÞ ¼ 0

one finds that the set of equations to be solved can be written as

io
2G

r ¼ CU; ð10Þ

where

r ¼

sðx; hÞ

sðx;�hÞ

tðx; hÞ

tðx;�hÞ

8>>><
>>>:

9>>>=
>>>;

¼

0

0

#t

0

8>>><
>>>:

9>>>=
>>>;

eikx ð11a;bÞ

are the boundary conditions imposed and

U ¼

F1

F2

C1

C2

8>>><
>>>:

9>>>=
>>>;

ð12Þ

are the unknown coefficients of the potentials of the assumed solution. Solving for the coefficients,
see Appendix A, the potentials are found to be given by

F ¼
�ð1 � vÞikqT cT cos ðqLyÞ

d1
þ

ð1 � vÞikqT sT sin ðqLyÞ
d2

� �
eikx ð13aÞ

and

C ¼
ðq2

L þ vk2ÞsL cos ðqT yÞ
d2

þ
ðq2

L þ vk2ÞcL sin ðqT yÞ
d1

� �
eikx; ð13bÞ

Fig. 2. Axially force excited deep beam.
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where

d1 ¼ ðq2
L þ vk2Þðk2 � q2

T ÞcLsT � 2ð1 � vÞk2qT qLcT sL ð14aÞ

and

d2 ¼ ðq2
L þ vk2Þðk2 � q2

T ÞcT sL � 2ð1 � vÞk2qT qLcLsT : ð14bÞ

From Eq. (A.3), the spectral components of the velocities for the present case can be derived as

vx ¼
io
2G

qT

2k2 sinðqLyÞ
sinðqLhÞ

� ð2k2 � k2
T Þ

sinðqT yÞ
sinðqT hÞ

ð2k2 � k2
T Þ

2cotðqT hÞ þ 4k2qT qLcotðqLhÞ

8>><
>>:

�
2k2cosðqLyÞ

cosðqLhÞ
� ð2k2 � k2

T Þ
cosðqT yÞ
cosðqT hÞ

ð2k2 � k2
T Þ

2tan ðqT hÞ þ 4k2qT qL tanðqLhÞ

9>>=
>>;eikx

and

vy ¼
ok

2G

ð2k2 � k2
T Þ

sinðqT yÞ
cosðqT hÞ

þ 2qLqT
sinðqLyÞ
cosðqLhÞ

ð2k2 � k2
T Þ

2tanðqT hÞ þ 4k2qLqT tanðqLhÞ

8>><
>>:

þ
ð2k2 � k2

T Þ
cosðqT yÞ
sinðqT hÞ

þ 2qLqT

cosðqLyÞ
sinðqLhÞ

ð2k2 � k2
T Þ

2cotðqT hÞ þ 4k2qLqT cotðqLhÞ

9>>=
>>;eikx:

The excitation wavenumber spectra for soft and rigid indenters, can be derived to be,

#tsðkÞ ¼
Fx

t

sin kl

kl
ð15aÞ

and

#trðkÞ ¼
Fx

t
J0ðklÞ: ð15bÞ

For the point mobility, the extension to a contact area, which is large in comparison with the
governing wavelength, is again obtained via the complex power [10], i.e.,

YN

vxFx
¼
Z

S

vt� dS=

Z
S

t dS

����
����
2

:

This means that after some minor manipulations, the point mobility from an axial to an axial
translational velocity is found to be given by
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vxFx
¼
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T

Z
N
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qT EðkÞ
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with

EðkÞ ¼
sin kl

kl

� �2

; soft indenter;

ðJ0ðklÞÞ2; rigid indenter

8><
>: ð17Þ

and N1 as well as N2 retained from the previous section.
Regarding the cross mobilities, the spatial average is employed which leads to
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vyFx
¼

1

2l

Z
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vðxÞ dx=
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tt dx

and
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Z
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respectively.
Thus,
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�

þ
ð2k2 � k2

T ÞcotðqLhÞ þ 2qLqT cotðqT hÞ
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�
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which, in view of the integrand, vanishes identically whereas
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wyFx
¼
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2pGt

Z
N

�N
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T ÞtanðqLhÞ þ 2qLqT tanðqT hÞ
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�

þ
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does not. The excitation wavenumber spectra

%EðkÞ ¼

sin kl

kl


 �2

; soft indenter;

J0ðklÞ
sin kl

kl
; rigid indenter

8>><
>>: ð20Þ

are valid for both Eqs. (18) and (19).
Upon comparing the cross mobilities in Eqs. (8) and (19), it is evident that these differ.

Accordingly, one can conclude that the point-cross mobilities from force to rotational velocity
and moment to axial velocity strictly constitute a reciprocal pair only in the hypothetical case of a
point excitation in which case, the mobility becomes

YN

vxMz
¼ YN

wzFx
¼

io
2pGt

Z
N

0

k2 ð2k2 � k2
T ÞtanðqLhÞ þ 2qLqT tanðqT hÞ
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�

þ
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T ÞcotðqLhÞ þ 2qLqT cotðqT hÞ
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�
dk:
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In the case that the beam is very deep, the tangents tend to i and cotangents to �i as before which,
in this case, means that

YN

wzFx
-� i

o
pGt

2k2
T

ð1 � vÞ

Z
N

0

qLEðkÞ
N

dk; ð16aÞ

whereas

YN

wzFx
-

io
pGt

Z
N

0

k2 %EðkÞ
ð2k2 � k2

T Þ þ 2qLqT

N

� �
dk ð19aÞ

with N retained from the previous section.
For both kinds of indenters, the behaviour of the integrand in Eq. (16a) effectively prevents a

limiting value process for low frequencies. Hence, a qualitatively complicated influence of the
beam height and indenter length can be expected.

Regarding the cross mobility from a force to the rotational velocity, one finds in the limit of
infinite beam depth that for a soft indenter,

YN

wzFx
-�

io
4Gtl

ð1 � vÞ
ð1 þ vÞ

E�
io

8Gtl
: ð21Þ

This means that the shear-tensional nearfield yields a response of a ‘negative spring’, which is
controlled by the elasticity in shear. A corresponding estimate of the local deformation in the case
of a rigid indenter has not been found. One may, however, cautiously infer a similar dependence
as for the soft indenter from the similarity of the excitation wavenumber spectra for small
Helmholtz numbers. This is furthermore supported by a comparison of the contributions from the
shear-tensional near field to the point moment mobility for different indenters [1] where the
variations were demonstrated small.

3. Numerical analysis

3.1. Lateral moment excitation

The point and cross mobilities derived in a previous section can be analyzed numerically. For
the numerical analysis it is convenient to use normalized versions. As employed in Ref. [1], the
point moment mobility is normalized with respect to half the magnitude of the corresponding
mobility for slender beams, which yields

YN

wM ¼
YN

wM

ðo=4BkBÞ

¼ �i
2

p
ð1 þ nÞ

6

� �3=4
H

l
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p Z
N

0
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ð1 � nÞ

2
� k2

r
EMðkÞ

1

N1

�
1
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� �
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where

EMðkÞ ¼
3

kkT l

� �2
sin kkT l

kkT l
� cos kkT l

� �2

; soft indenter;

ð2J1ðkkT lÞÞ2; rigid indenter

8><
>: ð23Þ

and

N1 ¼ð2k2 � 1Þ2tan kT h
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2
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r !
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2
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p
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N2 ¼ð2k2 � 1Þ2cot kT h
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2
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r !

þ 4k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � nÞ

2
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p
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Herein, the constitutive relation

k2
L

k2
T

¼
ð1 � vÞ

2
ð25Þ

is invoked.
In a similar manner, the point-cross mobility from a lateral moment to an axial translational

velocity, normalized with respect to half the magnitude of the moment mobility of an Euler beam,
multiplied by half its depth, take the form
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2
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p
Þ

N2

1
CCA dk ð26Þ
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with

%EMðkÞ ¼

3

kkT l

sin kkT l

kkT l
� cos kkT l
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sin kkT l

kkT l
; soft indenter;

2J1ðkkT lÞ
sin kkT l

kkT l
; rigid indenter:

8>><
>>: ð27Þ

This normalization is introduced since for a rigid beam lamina, the moment is a free vector and
can be seen acting at the neutral layer whereas the axial translational velocity at the edge is
‘geometrically’ enlarged.

Due to the branch points, the integrals have to be split in three main parts, cf. Ref. [1],
whereby

IIpq2

Z ffiffiffiffiffiffiffiffiffiffiffiffi
ð1�nÞ=2

p
0

; II Ipq2

Z 1 ffiffiffiffiffiffiffiffiffiffiffiffi
ð1�nÞ=2

p and IIIIpq2

Z
N

1

:

The numerical procedure employed herein is similar to that described in Ref. [1] where the point
moment mobility was treated.

For the third region it is necessary to carry out the integration in two steps of which the
first addresses the actual integral and the second, the tail-integral, which must be
computed asymptotically. In accordance with Ref. [1], one may set tanhðz) equal to unity
for arguments larger than six. It must be observed, however, that in the present case, the
argument is complex and a product of the two factors k and kT h where the latter typically
ranges from 0.01 to 100. This means that for kX10 and simultaneously kT lX6; the
approximation

III tailIvxMz
¼ �2

1 � n
1 þ n

� �Z
N

M

%EMðkÞ
k

dk ð28Þ

is applicable considering the fact that k2
b1: In view of the two conditions given above, the lower

integration limit M is set to be

MXMax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðl=HÞ2ð12=kT lÞ2

q
; 10


 �
: ð29Þ

Initially, far-reaching analyses were undertaken to ascertain physicality and computational
stability of the numerical results. Hereby, the complete solution was split into its symmetric and
antisymmetric parts for which pure asymptotic modes for small Helmholtz numbers are available,
see Fig. 3.

3.2. Axial force excitation

In a similar manner, the mobility elements relating to an axial force excitation can be rewritten
for a numerical analysis. For the axial point force mobility, the normalization with respect to the
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mobility of an infinite rod is appropriate which means that
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vxFx
¼
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where

EF ðkÞ ¼
sin kkT l

kkT l

� �2

; soft indenter;

J0ðkkT lÞ2; rigid indenter

8><
>: ð31Þ

and N1; N2 given by Eq. (24). As for moment excitation, the numerical integration is subdivided in
three regions. For large M; the integral can, analogous to that of the previous case, be
approximated by

IvxFx
-

2

ð1 þ nÞ

Z
N

M

EF ðkÞ
k

dk: ð32Þ

The point-cross mobility from an axial force to a lateral rotational velocity normalized
with respect to the moment mobility of an Euler beam multiplied by half its depth, take

Fig. 3. Symmetric (a) and antisymmetric (b) excitation.
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the form

YN

wzFx
¼

YN

wzFx

ðoH=8BkBÞ
¼

4i

p
ð1 þ nÞ

6

� �3=4
H

l

� �3=2

ðkT lÞ3=2

	
Z

N

0

k2 %EF ðkÞ

ð2k2 � 1Þtan kT h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � nÞ

2
� k2

r !
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � nÞ

2
� k2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p
tan kT h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p� �
N1

0
BBBB@

þ

ð2k2 � 1Þcot kT h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � nÞ

2
� k2

r !
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � nÞ

2
� k2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p
cot kT h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p� �
N2

1
CCCCA dk

ð33Þ

with

%EF ðkÞ ¼

sin kkT l

kkT l


 �2

; soft indenter;

J0ðkkT lÞ
sin kkT l

kkT l
; rigid indenter:

8>>><
>>>:

ð34Þ

For the third region it is again necessary to carry out the integration in two steps of which the
second addresses the tail-integral asymptotically as

III tailIwzFx
¼ �2

1 � n
1 þ n

� �Z
N

M

%EF ðkÞ dk: ð35Þ

The lower limit of integration M is, as before, given by the condition in Eq. (29).

4. Numerical results and discussion

The normalized, axial point mobilities for the two ideal indenters are shown in Figs. 4 and 5.
The normalization introduced refers to the (characteristic) mobility of an infinite rod. Owing to
the fact that the imaginary part changes its overall character from being stiffness controlled for
small Helmholtz numbers to being mass controlled for large, the presentation of this part is split
into two diagrams. In the figures, the parameter is the ratio of beam depth to indenter length.

For Helmholtz numbers below the dilatational resonance, the axial point mobility can be
interpreted as that of a rod subject to a combined force and moment excitation, reduced to the
neutral layer. Owing to the averaging over the excitation area, it is seen that the larger the
indenter, the smaller the imaginary part where then the latter essentially stems from the rotational
motion. Also indicated is the increased influence of the shear-tensional near field as the ratio of
beam depth to indenter length grows large. At high Helmholtz numbers, the features of a
waveguide are clearly displayed with an overall diminishing imaginary part. This behaviour can be

B.A.T. Petersson / Journal of Sound and Vibration 264 (2003) 91–116102



neatly interpreted by employing a fluid acoustic analogy. For a baffled piston, the directivity is
enhanced with increasing Helmholtz number (ka where a is the radius of the piston). This means
that less and less of the medium outside a hypothetical cylinder of the same cross-sectional
dimension as that of the piston participates in the power transmission to the far field. Transferring
this reasoning to the structural acoustic case, the real part of the mobility tends to that of a shear
stress excited strip, across the depth of the beam, with a width equal to the length of the indenter.
By the same token, the imaginary part approaches zero, inversely proportional to Helmholtz
number.

In the region of rod behaviour, i.e., for kT lopl=h; the numerical results demonstrate clearly
that the rigidity of the indenter is of negligible influence whereas differences can be observed in the
waveguide region.

In Figs. 6 and 7, the normalized moment to translational velocity cross-transfer mobility is
presented for the two idealized indenters, respectively. The normalization introduced in this case

Fig. 4. Normalized real and imaginary parts of axial point force mobility; soft indenter. ( 
 
 
 
 ) H=2l ¼ 0:5; (—)

H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— 
—) H=2l ¼ 10:
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compares the mobility as calculated employing continuum theory with that obtained due to a pure
rotation of the beam lamina, multiplied by the distance from the neutral layer to the excited edge
at the response position. In the graphs, the parameter is the ratio of beam height to indenter
length, as before. It should be observed that both ordinates, real and imaginary, are negative
meaning that a positive moment yields a velocity in the negative x direction, see Fig. 1.

Although not identical, one can see that the rigidity of the indenter is of subordinate influence
also for the point-cross mobility from a moment to the axial velocity. Thus, the two sets of curves
are practically similar and the discrepancies are mainly noticeable for large Helmholtz numbers,
typically kT l > 1: For small Helmholtz numbers and small beam heights, the mobility appears to
follow elementary beam theory. The results presented for the imaginary part, however, suggest
that the (spatial) averaging of the response over the indenter length reduces this part of the
mobility compared with prediction based on elementary theory when the indenter is longer than
or equal to the height of the beam. It is also observed that the beam lamina rotation interpretation

Fig. 5. Normalized real and imaginary parts of axial point force mobility; rigid indenter. ( 
 
 
 
 ) H=2l ¼ 0:5; (—)

H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— 
—) H=2l ¼ 10:
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is applicable only for very small Helmholtz numbers, kT lo0:1: At high Helmholtz numbers, the
beam constitutes a waveguide with a distinct cut-on at which the beam depth equals half a
wavelength for the quasi-longitudinal wave. In the waveguide region, the point-cross mobility is
essentially governed by the on-set of higher order in-plane waves. One can note that as the ratio of
beam height to indenter length increases, the imaginary part deviates from that given by
elementary beam theory, which suggests an enhanced influence of the shear-tensional near field.

‘Reciprocity’ is addressed by considering the point-cross mobility from axial force to rotational
velocity is displayed for the two principal indenters in Figs. 8 and 9. The parameter in the graphs
is the same as that in previous diagrams. Again, it is established that the indenter rigidity is of
subordinate influence and that elementary beam theory can be employed for the point-cross
mobility for small Helmholtz numbers and beam depths. In the graph presenting the soft indenter,
imaginary part for small Helmholtz numbers is also included the asymptotic behaviour resulting
from a shear-tensional near field as given by Eq. (27). It can be observed that this asymptote

Fig. 6. Normalized real and imaginary parts of moment to translational velocity point-cross mobility; soft indenter.

( 
 
 
 
 ) H=2l ¼ 0:5; (—) H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— 
—) H=2 l ¼ 10:
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slightly overestimates the imaginary part, a finding that is ascribed to the fact that the asymptotic
behaviour assumes an infinitely deep beam.

In the range immediately above the dilatational resonance, the real parts exhibit a local, more
or less broad, maximum for large beam depth to indenter length ratios. It is observed, moreover,
that the larger this ratio, the more prominent the waveguide resonances, even though the
envelopes slowly decay for high Helmholtz numbers. A similar pattern is found also for the
imaginary part.

Upon comparing the point-cross mobilities in Figs. 6 and 8 as well as Figs. 7 and 9 it is evident
that the pairs closely resemble those of reciprocal ones for small Helmholtz numbers, kT lo1:
From the upper region, however, it is clear that this is not the case and the theoretically based
conclusion of non-reciprocity is numerically corroborated. In practice, the difference may not be
important owing to the fact that the wavefield is blurred by resonances for finite structures and
wave conversion associated with the presence of discontinuities. Accordingly, reciprocity should

Fig. 7. Normalized real and imaginary parts of moment to translational velocity point-cross mobility; rigid indenter.

( 
 
 
 
 ) H=2l ¼ 0:5; (—) H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— 
—) H=2l ¼ 10:
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be valid in an approximate, overall sense. The basic complication remains, however, that in order
to obtain a complete and correct description of the waveguide features, the mobility must be
numerically evaluated.

Based on the theoretical and numerical results, an estimation procedure for the axial point
mobility can be attempted. For the real part, the procedure simply consists of the characteristic
mobility of the associated rod up to kT H ¼ 1 where above is employed the characteristic mobility
of the strip of dimensions equal to the indenter length, width and depth of the beam, carrying pure
shear waves, as discussed above. When the dilatational resonance occurs below the Helmholtz
number of the fully developed shear strip waveguide, i.e., below kT l > p=2; the apparent strip
width varies in accordance with the piston analogy such that the real part grows with Helmholtz
number. This means that the procedure for the real part generally encompasses three ranges. For
the imaginary part on the other hand, there is a trade-off between the response due to the (rigid)

Fig. 8. Normalized real and imaginary parts of axial force to rotational velocity point-cross mobility; soft indenter.

( 
 
 
 
 ) H=2l ¼ 0:5; (—) H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— —) H=2l ¼ 10: (— 
—) shear-tensional

nearfield for H=2l ¼ 10:
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beam lamina rotation and that of the shear-tensional near field at Helmholtz numbers below unity
whereas a vanishing imaginary part can be assumed there above. As established in the theoretical
development, an asymptotic description of the shear-tensional near field is not explicitly available
in the case of axial force excitation. From a dimensional analysis, however, based on such
descriptions for plates [1] and that derived herein for the point-cross mobility, an approximation
can be tentatively devised as

Im½Y CN

vF �E
op
4Gt

: ð36Þ

In the region of rod behaviour, this local reaction is then superimposed on the projected beam
lamina rotation. For the upper region, the fundamental dependence is taken from the baffled
piston analogy. The estimation procedure is compiled in Table 1.

Fig. 9. Normalized real and imaginary parts of axial force to rotational velocity point-cross mobility; rigid indenter.

( 
 
 
 
 ) H=2l ¼ 0:5; (—) H=2l ¼ 1; (- - -) H=2l ¼ 2; (— —) H=2l ¼ 5; (— 
—) H=2l ¼ 10:
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Upon applying this estimation procedure, one obtains a prediction as illustrated in Fig. 10. The
comparison clearly demonstrates that the estimation procedure reveals the basic features with
respect to the real part, whereas it is inadequate with respect to the imaginary for small ratios of
the beam height to indenter length. Accordingly there is an additional ingredient, which might be

Table 1

Estimation procedure for axial point force mobility

Region kT Hpp and kT lpp=2 kT HXp and kT lpp=2 kT HXp and kT lXp=2

Re½YvxFx
� 1

2tHrcL

1

2tHrcL

2

p
kT l

1

2tHrcT

Im½YvxFx
� oH2

16BkB

þ
op
4Gt

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pkT H

p
2rcT tH

p3

4

1

2rcT tH

ffiffiffiffiffi
H

2l

r
1

kT l

Fig. 10. Comparison of computed and estimated axial point force mobility. H=2l ¼ 1 (—) computed and ( 
 
 
 
 )
estimated, H=2l ¼ 5 (- - -) computed and (— —) estimated, H=2 l ¼ 10 (- 
 - 
 -) computed and (— 
—) estimated.
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linked to the increased influence of shear, and thereby an additional dependence on the indenter
size, not revealed by the dimensional analysis employed.

Regarding the point-cross mobilities, the numerical results suggest that a cross-sectionally
integrated beam theory is applicable for small Helmholtz numbers and limited beam depths,
irrespective of the indenter rigidity. This means that the cross-coupling between either a moment
and the axial velocity or an axial force and the rotational velocity can be simply viewed as the
axial velocity at the edge of a rotating rigid beam lamina resulting from the moment applied in the
former case and as the rotational velocity of the beam lamina due to the equivalent moment
resulting from the axial force times the lever of half the beam depth. Tentatively, one may set the
upper limit of applicability for approximations based on such reasoning to kT lopl=H or
equivalently kT Hop: As the beam becomes deep in comparison with the length of the indenter,
the shear-tensional nearfield affects the response and the imaginary part as obtained from
elementary beam theory must be augmented by the contribution from the nearfield. Accordingly,
an approximation for the point-cross mobility can be proposed on the form

YvxMz
E�

oH

8BkB

1 þ i 1 þ
ð1 � nÞ

3

H

l

� �2

kBl

" #( )
; ð37Þ

whereby it is seen that the shear-tensional nearfield only comes into play for

kBl >
3

ð1 � nÞ
l

H

� �2

: ð38Þ

Thus, an estimation procedure for these mobility elements in the region of small Helmholtz
numbers can be compiled as in Table 2.

In Fig. 11 are compared the estimated and computed results for three ratios of beam depth to
indenter length. For the point-cross mobilities as well, the estimation procedure yields reasonable
real parts up to the dilatational resonance. With the normalization introduced all curves coincide
and are unity. In contrast, too large imaginary parts which indicates that the reactive behaviour
has a more intricate dependence on the beam height to indenter length ratio than revealed by the
asymptotic analysis. It is seen, however, that the slope is correctly captured for depth to length
ratios equal to five or larger. It should be noted that spatial averaging is not considered in the
estimation procedure, which enhances the discrepancies for slender beams and large indenters.

Table 2

Estimation procedure for point-cross mobilities

Region kT lppl=H kT l > pl=H

Re½YwzFx
�ERe½YvzMx

�
�

oH

8BkB

—

Im½YwzFx
�EIm½YvzMx

�
�

oH

8BkB

1 þ
ð1 � vÞ

3

H

l

� �2

kBl

" #
—
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Approximations for the upper region have not been pursued since the waveguide effects
controlling the cross-coupling between the orthogonal excitation and response components
depend on the actual stress distribution.

5. Concluding remarks

The multi-point and multi-component transmission requires knowledge of point-cross and
cross-transfer mobilities beside the point and transfer mobility elements for the general case. The
former elements are of particular interest for configurations where the contact areas are displaced
from the neutral layer of a receiver in bending so that excitation and response components may
also be geometrically coupled.

The three primary questions raised, are the point-cross mobilities reciprocal, are cross-
sectionally integrated theories applicable, and is there an influence of the shear-tensional near

Fig. 11. Comparison of computed and estimated point-cross mobility. H=2l ¼ 1 ( ) computed and ( 
 
 
 
 
 
 )
estimated, H=2l ¼ 5 (- - -) computed and (— —) estimated, H=2l ¼ 10 (- 
 - 
 -) computed and (— 
—) estimated.
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field, have been addressed and it can be concluded that the shear-tensional near field does indeed
influence the point-cross mobilities for small indenters and deep beams. Likewise, though
anticipated, the axial point force mobility is affected under the same conditions but an explicit
expression has not been established. The contribution to the imaginary part from the shear-
tensional near field, moreover, is found dominant for ratios of beam depth to indenter length greater
than five, which implies that the imaginary part is not adequately described solely by this field for
slender or moderately deep beams but the continuum theoretical expression must be employed.

The two point-cross mobilities have been demonstrated to be strictly reciprocal solely in the
hypothetical case of point excitation. The deviation from a reciprocal state, however, is practically
negligible for realistic excitation conditions in the range below the dilatational resonance. For large
Helmholtz numbers, discrepancies are noticeable but reciprocity can still be applied in an approximate,
overall sense when the prediction of the waveguide effects are of subordinate importance.

For both kinds of cross mobility elements, the inter-relation between ordinary bending, shear
and the shear-tensional near field is quantitatively complicated and only for the extreme
configurations, slender and very deep beams, respectively, typical deformations can be identified.
This means that cross-sectionally integrated theories such as Euler–Bernoulli or Timoshenko are
inadequate. In turn, the rigid beam lamina rotation model is only applicable as a basis for
developing the point-cross mobility elements for very small Helmholtz numbers, kT l; (strictly as
Helmholtz number approaches zero) and a correct imaginary part must be computed from
continuum theory.

The effects of the shear-tensional near field in the case of axial point force excitation can be
cautiously extrapolated from the point moment mobility [1] and the point-cross mobility from
moment to axial velocity derived in this work where closed form, asymptotic expressions have
been obtained. With such a procedure, however, it should be borne in mind that the expressions
resulting do not reveal the influence of variations in the excitation stress field.

For practically realistic dimensions of beams in vehicles, buildings and ships, it is clear that the
cross mobilities will be influential and cannot be omitted a priori in an analysis. In particular, it is
found, that the range around the dilatational resonance can be significant. This is so for two
reasons. First, the real part is a maximum and second, the imaginary part is negative and partially
controlled by the size of the indenter implying that matching in dynamic characteristics can occur
for out of phase, complementary excitation components.

For the point-cross mobilities, taken to be reciprocal in an overall sense, as well as the axial
point force mobility, estimation procedures have been attempted which satisfactorily depict the
trends of the real parts. With respect to the imaginary parts, only the extreme cases of slender or
very deep beams are acceptably predicted. This deficiency can be primarily referred to the
increased influence of shear as the beam height to indenter size ratio increases and as the
wavelength decreases. Accordingly, the employment of Timoshenko theory should markedly
improve the estimation procedures for intermediate cases.
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Appendix A. Coefficient matrix

The divergence free and irrotational fields can be described in terms of the stream and vector
potential functions. For the present, two-dimensional problem, the vector character of the
potential function is unnecessary and a scalar version is sufficient

Fðx; yÞ ¼ fF1cos ðqLyÞ þ F2sin ðqLyÞgeikx; ðA:1Þ

Cðx; yÞ ¼ fC1cos ðqLyÞ þC2sin ðqLyÞgeikx: ðA:2Þ

The axial and transverse velocity components can be obtained from the relations

nx ¼ F;x þC;y; ny ¼ F;y þC;x; ðA:3a;bÞ

where a comma means differentiation with respect to the co-ordinates following.
For a linearly elastic material in a state of plane stress, the constitutive equations can be

written as

sx ¼
2G

ioð1 � nÞ
ðF;xx þC;xy þ nðF;yy þC;xyÞÞ; ðA:4aÞ

sy ¼
2G

ioð1 � nÞ
ðF;yy þC;xy þ nðF;xx þC;xyÞÞ; ðA:4bÞ

txy ¼
2G

io
F;xy þ 1

2
ðC;yy �C;xxÞ

" #
: ðA:4cÞ

This means that for the upper edge where y ¼ h

0 ¼ðq2
L þ nk2ÞfF1 cos ðqLhÞ þ F2 sin ðqLhÞg

� ð1 � nÞikqTfC1 sinðqT hÞ �C2 cosðqT hÞg

and

io
2G

#t ¼ ikqLf�F1sin ðqLhÞ þ F2 cos ðqLhÞg

þ
k2 � q2

T

2
fC1 cos ðqT hÞ þC2 sin ðqT hÞg;

whereas at the lower, i.e., y ¼ �h

0 ¼ðq2
L þ nk2ÞfF1 cos ðqLhÞ � F2 sin ðqLhÞg

þ ð1 � nÞikqT C1 sin ðqT hÞ þC2 cos ðqT hÞf g

as well as

0 ¼ ikqLfF1sinðqLhÞ þ F2 cos ðqLhÞg

þ
k2 � q2

T

2
fC1 cos ðqT hÞ �C2 sin ðqT hÞg:
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The coefficients Ckn can now be identified to be

C11 ¼ ðq2
L þ vk2ÞcL; C12 ¼ ðq2

L þ vk2ÞsL; C13 ¼ �ð1 � vÞikqT sT ; C14 ¼ ð1 � vÞikqT cT ;

C21 ¼ ðq2
L þ vk2ÞcL; C22 ¼ �ðq2

L þ vk2ÞsL; C23 ¼ ð1 � vÞikqT sT ; C24 ¼ ð1 � vÞikqT cT ;

C31 ¼ �ikqLsL; C32 ¼ ikqLcT ; C33 ¼
ðk2 � q2

T Þ
2

cT ; C34 ¼
ðk2 � q2

T Þ
2

sT ;

C41 ¼ ikqLsL; C42 ¼ ikqLcL; C43 ¼
ðk2 � q2

T Þ
2

cT ; C44 ¼ �
ðk2 � q2

T Þ
2

sT ;

wherein the abbreviations cL ¼ cosðqLhÞ; sL ¼ sinðqLhÞ; cT ¼ cosðqT hÞ and sT ¼ sinðqT hÞ have
been used.

Thus, the matrix C can be established as

C ¼

C11 C12 C13 C14

C11 �C12 �C13 C14

C31 C32 C33 C34

�C31 C32 C33 �C34

2
6664

3
7775 ðA:5Þ

and the determinant is readily obtained as

Det½C� ¼ 4fðC11C34 � C14C31ÞðC12C33 � C13C32Þg: ðA:6Þ

With D ¼ C�1; the elements required in view of the axial excitation are

D13 ¼
Cof ðC31Þ
Det½C�

; D23 ¼
Cof ðC32Þ
Det½C�

; D33 ¼
Cof ðC33Þ
Det½C�

; D34 ¼
Cof ðC34Þ
Det½C�

: ðA:7a;b; c;dÞ

From (A.5) the co-factors can be developed as

Cof ðC31Þ ¼ �2C14ðC12C33 � C13C32Þ; ðA:8aÞ

Cof ðC32Þ ¼ �2C13ðC11C34 � C14C31Þ; ðA:8bÞ

Cof ðC33Þ ¼ �2C12ðC11C34 � C14C31Þ ðA:8cÞ

and

Cof ðC34Þ ¼ �2C11ðC12C33 � C13C32Þ: ðA:8dÞ

Upon substituting Eqs. (A.6) and (A.8) into Eqs. (A.7), using the elements of C established above,
the stream and potential functions in Eqs. (13) result.

Appendix B. Nomenclature

B flexural stiffness
C coefficient matrix
D coefficient matrix
E excitation spectrum, Young’s modulus
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F force
G shear modulus
H beam height
I integral
J Bessel function
M moment
N denominator
S surface
Y mobility
h half the beam height
i imaginary unit
k wavenumber
l half the indenter length
q wavenumber radical
t beam width
v translational velocity
w rotational velocity
x; y; z Cartesian co-ordinates
F; U Potential function, amplitude vector
C stream function
k normalized wavenumber
Z loss factor
o angular frequency
r density
s; r normal stress, stress vector
t shear stress
n the Poisson ratio

Subscripts
B flexural
F force
L longitudinal
M moment
T transverse
r rigid
s soft
v lateral translational velocity
w lateral rotational velocity
p; q region index
N infinite beam

Symbol
— spatially averaged
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